
International Journal of Scientific & Engineering Research, Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Ordinary Differential Equations:
MATLAB/Simulink

®
Solutions.

Aliyu B. Kisabo, C. A Osheku, Adetoro M.A Lanre, Aliyu Funmilayo A.

(Only author names, for other information use the space provided at the bottom (left side) of first page or last page. Don‘t superscript numbers for authors)

Abstract— Ordinary differential equations (ODEs) are used throughout engineering, mathematics, and science to describe how physical

quantities change. Hence, effective simulation (or prediction) of such systems is imperative. This paper explores the ability of

MATLAB/Simulink
®
 to achieve this feat with relative ease-either by writing MATLAB code commands or via Simulink for linear Initial Value

Problems (IVPs). Also, solutions to selected examples considered in this paper were approached from the standpoint of a numerical and

exact solution for the purpose of comparison. Since no single numerical method of solving a model suffices for all systems, choice of a

solver is of utmost important. Thus, experimenting between fixed-step and variable-step solver was also explored. For the selected

examples, variable-step solvers out-performed the fixed-step counterpart.

Index Terms— ODEs, analytical solution, numerical solution, fixed-step solvers, variable step-solvers, MATLAB/Simulink

—————————— ——————————

1 INTRODUCTION

N mathematics, an ordinary differential equation (ODE) is
an equation in which there is only one independent varia-
ble and one or more derivatives of a dependent variable

with respect to the independent variable, so that all the deriva-
tives occurring in the equation are ordinary derivatives. The
important issue is how the unknown variable for instance y
appears in the equation. A linear ODE involves the dependent
variable (y) and its derivatives by themselves. There must be
no "unusual" nonlinear functions of y or its derivatives. Also, a
linear equation must have constant coefficients, or coefficients
which depend on the independent variable (x, or t). If y or its
derivatives appear in the coefficient the equation is nonlinear.
In the case where the equation is linear, it can be solved by
analytical methods.

Ordinary differential equations arise in many different con-
texts including geometry, mechanics, astronomy, population
modeling, control engineering etc. Many mathematicians have
studied differential equations and contributed to the field,
including Newton, Leibniz, the Bernoulli family, Riccati, Clai-
raut, d'Alembert and Euler. Much study has been devoted to
the solution of ordinary differential equations. There is one
basic feature common to all problems defined by a linear or-
dinary differential equation: the equation relates a function to
its derivatives in such a way that the function itself can be de-
termined. This is actually quite different from an algebraic
equation, say whose solution is usually a number.

Linear systems theory is the cornerstone of control theory and
a prerequisite for essentially all graduate courses in this area.
It is a well-established discipline that focuses on linear diffe-
rential equations from the perspective of control and estima-
tion. Control Engineering plays a fundamental role in modern
technological systems.

————————————————

 Aliyu Bhar Kisabo, Osheku C.A, Adetoro M.A.L & Mrs. Funmi-
layo A. Aliyu, are Ebgineers with the National Space Research and
Development Agency (NASRDA) of Nigeria.Currently stationed
at the Center for Space Transport & Propulsion (CSTP), Epe, La-
gos State of Nigeria.
Email: sk_bhar@yahoo.com, Phone: +2348028908182.

The benefits of improved control in industry can be immense.
They include improved product quality, reduced energy con-
sumption, minimization of waste materials, increased safety
levels and reduction of pollution. Owing to the fact that a
large number of controllers implemented in real life are linear
ones, the study and means of obtaining solution to linear Or-
dinary Differential Equations that depict the behavior of such
dynamic systems or model is imperative, not just from the
mathematical standpoint but from the fact that such controller
design has the system dynamics as the root of the theoretical
design.

The problems of solving an ODE are classified into initial
value problems (IVP) and boundary value problems (BVP),
depending on how the conditions at the endpoints of the do-
main are specified. All the conditions of an initial-value prob-
lem are specified at the initial point. On the other hand, the
problem becomes a boundary-value problem if the conditions
are needed for both initial and final points. The ODE in the
time domain are initial-value problems, so all the conditions
are specified at the initial time, such as t = 0 or x = 0. For nota-
tions, we use t or x as an independent. MATLAB has a dearth
of solver that can be used to obtain solution to ODE's with rela-
tive ease. In this paper, the version 2010a of MATLAB® was
used for all simulations.

2.0 SOLVERS

A dynamic system is simulated by computing its states at suc-
cessive time steps over a specified time span, using informa-
tion provided by the model. The process of computing the
successive states of a system from its model is known as solv-
ing the model. No single method of solving a model suffices
for all systems. Accordingly, a set of programs, known as solv-
ers, are provided that each embody a particular approach to
solving a model.

Mathematicians have developed a wide variety of numeri-
cal integration techniques for solving the ordinary differential
equations (ODEs) that represent the continuous states of dy-
namic systems. An extensive set of fixed-step and variable-step

I

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Derivative
mailto:sk_bhar@yahoo.com

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

continuous solvers are provided, each of which implements a
specific ODE solution method.

2.1 Fixed-Step solvers

The solvers provided in Simulink fall into two basic catego-
ries: fixed-step and variable-step. Fixed-step solvers solve the
model at regular time intervals from the beginning to the end
of the simulation. The size of the interval is known as the step
size. You can specify the step size or let the solver choose the
step size. Generally, decreasing the step size increases the ac-
curacy of the results while increasing the time required for
simulating the system.

Two types of fixed-step continuous solvers that Simulink
provides are: explicit and implicit. Both are approaches used
in numerical analysis for obtaining numerical solutions of
time-dependent ordinary and partial differential equations, as
is required in computer simulations of physical processes. The
difference between these two types lies in the speed and the
stability. An implicit solver requires more computation per
step than an explicit solver but is more stable. Therefore, the
implicit fixed-step solver that Simulink provides is more adept
at solving a stiff system than the fixed-step explicit solvers.

2.1.1 Explicit Fixed-Step Continuous Solvers.

Explicit solvers compute the state of a system at a later time
from the state of the system at the current time. Hence, the
value of a state at the next time step is computed as an explicit
function of the current values of both the state and the state
derivative. Expressed mathematically for a fixed-step explicit
solver:

),(*)()1(nDxhnxnx (1)
where x is the state, Dx is the solver dependent function that
estimates the state derivative, h is the step size, and n indicates
the current time step. Simulink provides a set of explicit fixed-
step continuous solvers. The solvers differ in the specific nu-
merical integration technique that they use to compute the
state derivatives of the model. None of the explicit fixed-step
continuous solvers in Simulink has an error control mechan-
ism. Therefore, the accuracy and the duration of a simulation
depend directly on the size of the steps taken by the solver. As
you decrease the step size, the results become more accurate,
but the simulation takes longer. Also, for any given step size,
the more computationally complex the solver is, the more ac-
curate are the simulation results.

2.1.2 Implicit Fixed-Step Continuous Solvers.

An implicit fixed-step solver computes the solution by solving
an equation involving both the current state of the system and
the later one. This solution, at the next time step is computed
as an implicit function of the state at the current time step and
the state derivative at the next time step. In other words:

.0)1(*)()1(nDxhnxnx (2)
Simulink provides one implicit fixed-step solver: ode14x.

This solver uses a combination of Newton's method and
extrapolation from the current value to compute the value of a
state at the next time step. You can specify the number of
Newton's method iterations and the extrapolation order that
the solver uses to compute the next value of a model state. The
more iterations and the higher the extrapolation order that

you select, the greater the accuracy you obtain. However, you
simultaneously create a greater computational burden per step
size.

2.3.0 Variable-Step Continuous solvers.

Variable-step solvers vary the step size during the simulation,
reducing the step size to increase accuracy when a model's
states are changing rapidly and increasing the step size to
avoid taking unnecessary steps when the model's states are
changing slowly. Computing the step size adds to the compu-
tational overhead at each step but can reduce the total number
of steps, and hence simulation time, required to maintain a
specified level of accuracy for models with rapidly changing
or piecewise continuous states. The variable-step solvers in the
Simulink product dynamically vary the step size during the
simulation. Each of these solvers increases or reduces the step
size using its local error control to achieve the tolerances that
you specify. You can further categorize the variable-step con-
tinuous solvers as: one-step or multistep, single-order or vari-
able-order, and explicit or implicit.

2.3.1 Explicit Continuous Variable-Step Solvers.

The explicit variable-step solvers are designed for non-stiff
problems. Simulink provides three such solvers: ode45, ode23,
and ode113.

While you can apply either an implicit or explicit conti-
nuous solver, the implicit solvers are designed specifically for
solving stiff problems whereas explicit solvers are used to
solve non-stiff problems. A generally accepted definition of a
stiff system is a system that has extremely different time
scales. Compared to the explicit solvers, the implicit solvers
provide greater stability for oscillatory behavior, but they are
also computationally more expensive; they generate the Jaco-
bian matrix and solve the set of algebraic equations at every
time step using a Newton-like method.

3.0 MATLAB AND IVPS OF ODES.

IVPs of ODEs are categorized as non-stiff and stiff. It is hard to
define stiffness, but its symptoms are easy to recognize. Unfor-
tunately, the distinction between stiff and non-stiff IVPs can
be very important when choosing a method. The MATLAB
IVP solvers implement a variety of methods, but the documen-
tation recommends that you first try ode45, a code based on a
pair of one-step explicit Runge–Kutta formulas. If you suspect
that the problem is stiff or if ode45 should prove unsatisfacto-
ry, it is recommended that you try ode15s, a code based on the
backward differentiation formulas (BDFs). These two types of
methods are among the most widely used in general scientific
computing. Note also that Adams methods that are imple-
mented in ode113 are often preferred over explicit Runge–
Kutta methods when solving non-stiff problems in general
scientific computing.

In the bid to determine solution to ODEs, couple with the
fact that they arise in diverse forms, it is convenient for both
theory and practice to write them in a standard form. For a
first order ODE it may be written as,

).,(ytfy (3)
This is necessary because MATLAB IVP solvers accept prob-

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Process_(science)

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

lems of the more general form given in (4) involving a nonsin-
gular mass matrix M(t, y). These equations can be written in the
form given in (1) with f(t,y)=M(t,y)-1 F(t,y), but for some kinds
of problems the form in (4) is more convenient and more effi-
cient. With either form, we must first formulate the
ODEs as a system of first-order equations.

).,(),(ytfyytM (4)
 In either case it is assumed that the ODEs are defined on a
finite interval a≤t≤b and that the initial values are provided as
a vector given in (5). The numerical methods for IVPs starts
with y0 = A = y(a) and then successively compute approxima-
tions yn ≈ y(tn) on a mesh a=t0 <∙∙∙< tN =b. On reaching tn , the
basic methods are distinguished by whether or not they use
previously computed quantities such as yn-1 , yn-2 , …If they do,
they are called methods with memory and otherwise, one-step
methods.

.)(Aay (5)
The computation of yn+1 is often described as taking a step of
size hn = tn+1 – tn from tn . For brevity we generally write h = hn
in discussing the step from tn. On reaching (tn, yn), the local
solution u(t) is defined as the solution of

),(utfu .)(nn ytu (6)
A standard result from the theory of ODEs states that if v(t)
and w(t) are solutions of (3) and if f(t, y) satisfies a Lipschitz
condition with constant L, then for α < β we have

.)()()()()(Lewvwv (7)
In the classical situation that L(b − a) is of modest size, this re-
sult tells us that the IVP (1), (4) is moderately stable. This is
only a sufficient condition. Indeed, stiff problems are (very)
stable, yet L(b − a) >> 1. Without doing some computation, it is
not easy to recognize that a stable IVP is stiff. There are two
essential properties that will help you with this: A stiff prob-
lem is very stable in the sense that some solutions of the ODE
starting near the solution of interest converge to it very rapid-
ly (―very rapidly‖ here means that the solutions converge over
a distance that is small compared to b − a, the length of the
interval of integration). This property implies that some solu-
tions change very rapidly, but the second property is that the
solution of interest is slowly varying.

 The basic numerical methods approximate the solution
only on a mesh, but in some codes – including all of the MAT-
LAB solvers – they are supplemented with (inexpensive) me-
thods for approximating the solution between mesh points.
The backward differentiation formulas (BDFs) are based on
polynomial interpolation and so give rise immediately to a
continuous piecewise polynomial function S(t) that approx-
imates y(t) everywhere in [a, b]. There is no natural polynomial
interpolate for explicit Runge–Kutta methods, which is why
such interpolates are a relatively new development. A method
that approximates y(t) on each step [tn , tn+1] by a polynomial
that interpolates the approximate solution at the end points of
the interval is called a continuous extension of the Runge–Kutta
formula.

This paper will examine 4 simple applications, one each in
electrical, mechanical, chemical and a stiff problem. All solu-
tions to the selected problems will require the solution of a
differential equation. First, the authors will present a method
using the symbolic processing capabilities of MATLAB to

quickly code a differential equation for a graphical solution.
Second, the differential equations will be modeled and solved
graphically using Simulink. Finally, the authors will present
methods which uses MATLAB script file (m-file). Solvers will
be experimented and comparison will be made with the exact
solution as the benchmark [1].

4.0 ELECTRICAL ENGINEERING APPLICATION.

The first order ordinary differential equation that describes a
simple series electrical circuit with a resistor, inductor, and
sinusoidal voltage source is as follows:
 ,)150sin(10 iRtdtdiL .0)(ti (8)
For this example, the inductance, L is 1 henry and the resis-
tance R is 10 Ω. The voltage source is sinusoidal with a peak
voltage equal to 10 volts and an angular velocity of 150
rad/sec. Fig. 1 below gives a pictorial view of the typical cir-
cuit arrangement in consideration.

 Fig.1 Series RL circuit.

The MATLAB statement written to solve (8) symbolically (i.e.,
obtaining exact solution) is as follows [2]:
 c=dsolve('Dc=-10*c+10*sin(150*t)',' c(0)=0',…
 'IgnoreAnalyticConstraints','none')
 ezplot(c,[0 0.5])
The dsolve function symbolically solves the ordinary differen-
tial equation specified above. The first argument is the actual
ODE to be solved. D denotes differentiation with respect to the
independent variable which in this case is time t. A repeated
differentiation process would be required if a digit other than
1 were to follow D. The character following the D (I in this
case, is the circuit current), is the dependent variable. The re-
maining terms of the equation are coded as usual. The second
argument is used to specify the initial conditions of the circuit.
The initial current in this circuit at t = 0 is 0. The final argu-
ment is used to specify the independent variable (missing,
MATLAB assumes t by default). Note that all arguments must
be contained within single quotation marks as shown. The
output from the dsolve function is the symbolic solution to the
differential equation.
 Next, the differential equation describing the RL electric-
al circuit is modeled using Simulink. Simulink is a block dia-
gram programming language that is packaged with MATLAB.
With Simulink, the differential equation is described using
blocks from Simulink library. The blocks include an integra-
tor, gain, summer, sine wave source, and scope. The blocks are
then ―wired‖ together to generate the differential equation.
The complete Simulink model for the electrical circuit is de-

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

picted in Fig. 2. Note that a time clock is added to the Simu-
limk model to enable the exportation of the simulation time to
MATLAB workspace for accesability to plot simulation time
against the current.

Fig. 2 Simulink model of the RL circuit.

In Simulink, there lies the easy to try different solvers during
Simulation. Categorically, a solver in the class of fixed-step
solvers and that of the variable step-solvers can be selected.
Thus, in this paper, for the Simulink simulation we used the
fixed-step solver ode4.
 Thus, the graphical result to the RL circuit problem as de-
scribed by (8) is depicted in Fig. 3. It is interesting to note that
ode45 and ode113 (adaptive-step solvers) gave a better approx-
imation of the dynamic system compared to ode4 (a fixed-step
solver). We decided to capture just one of the points of dispar-
ity by zooming the graphical solutions to make our case.

Fig. 3 Graphical result of the RL circuit dynamics.

Here, for this example, the m-file option of the model solu-
tionhe the following code were used to generate results for
the solver ode45:
 function RL_ode45_sln
 t=[0 0.5]
 L=1;
 R=10;

 ini_i=0;
 [t,i]=ode45(@rhs,t,ini_i);
 plot(t,i,'o'),grid
 xlabel('t'), ylabel('i')
 axis ([0 0.5 -0.1 0.15])
 function didt=rhs(t,i)
 didt=(10*sin(150*t)-i*10)/L;
 end
 end

4.0 MECHANICAL ENGINEERING APPLICATION.

Given the linear single-input, single-output, mass-spring-
damper translational mechanical system, as shown in Fi.g 4.
The mathematical model is given as in (9); a second order dif-
ferential equation.

 Fig. 4 Mass-spring-damper system.

For this system, the input is force f(t) and the output is dis-
placement y(t), ẏ (t) is the velocity of the system dynamics.
Where, c is the damping coefficient and k the spring constant.

),()()()(tftkytyctym ,0)(ty .0)(ty (9)
Typically, the suspension mechanisms of automobiles are
modeled as given in (9). For this example the following values
were adopted; mas, m=2kg, initial velocity, ẏ =0m/sec, initial
displacement, y=0m, damping coefficient, c=2, spring constant,
k=4 and f(t)=1.

It is obvious that the dynamic system described by (9) has
two states (displacement and velocity), for this research our
investigation will focus only on position for obvious reasons.
To explore the behavior of the mechanical system, first from
the standpoint of the exact solution, the following MATLAB
code were used [3]:

 y=dsolve('D2y=-(2/3)*Dy –
 (4/3)*y + 1/3', 'Dy(0)=0','y(0)=0',...
 'IgnoreAnalyticConstraints','none')
 pretty(y)

We proceeded to model the system given in (9) in Simulink,
and employed the solvers ode4 and ode45 and ode113 for simu-
lation result. Simulink model of the system is depicted in Fig.
5. Notice also that a both states of the dynamic system are
made available separately in individual scoop blocks and also
in a display block. A third ‗scoop‘ block is also used to display
both states in one graph for perusal.A display block shows the
numerical values of each state at each time inatant during si-
mulation and only the values at the last time of simulation
remains displayed after simulation.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 5 Simulink model of mass-spring-damper system.

To investigate further for comparison, the solver ode45 was
employed using the option of MATLAB code to generate the
predicted approximate behavior of the system. These codes
are:
 function spring_mass_damper_ode45

t=[0 6]; % time scale
u=1;
ini_y=0; % initial conditions
ini_dydt=0;
[t,y]=ode45(@rhs,t,[ini_y; ini_dydt]);
plot(t,y(:,1));
function dydt=rhs(t,y)
dydt_1=y(2);
dydt_2=-(2/3)*y(2)-(4/3)*y(1)+ (1/3)*u;
dydt=[dydt_1;dydt_2];
end
end

Note, that either Simulink or MATLAB code could be used to
solve ODEs with any solver of one‘s choice, depending on
which means is more convenient for the user of MATLAB [3].

 Fig. 6 Mass-springe-damper dynamics solution.

For the ongoing example, ode45, ode113 and ode4 gave a very
good approximation of the dynamic system throughout the

regime of simulation. Hence, only one of the results is de-
picted in Fig. 6.

4.1 Simulation in State-space.

It is of great importance to also show that the model given in
(9) could be formulated in terms of state-space. The model in
state-space can be easily mapped in Simulink environment for
numerical simulation. This provides the bases for modeling
higher order differential equations. For the mass-spring-
damper problem, the model for the system is state-space is as
given

,BuAxx .DuCxy (10)
For the numerical simulation in Simulink, a state-space block
is available in Simulink library. This block allows the direct
input of the A, B, C and D matrixes that are unique to a partic-
ular state-space model. Modern Control Theory has state-
space as its mathematical base [4], hence effective simulation
of state-space models is of paramount importance to the con-
trol and stability engineer, a typical case is dealt with in [5].

4.2 Simulation in Transfer Function.

Also, Simulink gives a flexible platform that allows simulation
of dynamic systems in transfer functions. For the mass-spring-
damper problem, it can be shown that the equivalent model
for (9) in transfer function is as given (11). Simulink has a
standard block that allows the direct input of numerator and
denominator terms that describe a dynamic system. For clas-
sical controller design and analysis [6], this MATLAB capabili-
ty is most adequate.

.)()()(121 kcsmssfsx (11)
The state-space model and transfer function describing the
mass-spring-damper problem modeled in Simulink is shown
in Fig. 7.

Fig. 7 State-Space and Transfer function Simulink model.

5.0 CHEMICAL ENGINEERING APPLICATION.

The following 3 set of ordinary differential equations describes
the change in concentration between three species in a tank.

,1kdtd .5)0(

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

,111 kkdtd .0)0((12)
,11kdtd .0)0(

The reactions α → β → λ occur within the tank. The constants
k1, and k11 describe the reaction rate for α → β and β → λ re-
spectively. Where, k1=1hr-1 and k11 =2hr-1.

For the dynamic system in (12), as earlier done, we seek its
true solution by solving it analytically with the following
MATLAB command.

[a,b,g] = dsolve('Da = -1*a', 'Db = 1*a - 2*b',...
'Dg=2*b','a(0) = 5, b(0) = 0','g(0)=0',
'IgnoreAnalyticConstraints','none')
pretty(a), pretty(b), pretty(g)
ezplot(a)
hold on
ezplot(b)
ezplot(g)
Grid on
axis([0 5 0 5])

Now we will go ahead to model (12) in Simulink for the sole
purpose of obtaining the first numerical solution using the
approximation method of ode4 (Runge-Kutta). This was easily
modeled as depicted in Fig. 8.

Fig. 8: Simulink model of chemical mixture dynamics.

Finally, for this example we will employ a MATLAB code that
will involve the solver ode45 to solve the problem at hand. This
was achieved with the following code:

function chem_mixture_ode45
t=[0 5]; % time scale
k1=1;
k11=2;
c0=[5 ;0 ;0]; % initial conditions;
[t,c]=ode45(@rhs,t,c0);
%plot(t,c(:,1),'+',t,c(:,2),'*',t,c(:,3));
plot(t,c(:,1),t,c(:,2),t,c(:,3));
legend('alpha','beta','gamma')
xlabel('Time(seconds)')
ylabel('concentration of each specie(mols/hr)')

 grid
function dcdt=rhs(t,c)
% c(1)=Ca, c(2)=Cb, c(3)=Cg
dcdt_1=-k1*c(1);
dcdt_2=k1*c(1)-k11*c(2);
dcdt_3=k11*c(2);
dcdt=[dcdt_1;dcdt_2;dcdt_3];
end
end

Just like the situation in Fig. 6, no noticeable difference was
observed between the exact result and those of ode45, ode113
and ode4 numerical approximation methods. Hence, a com-
parative plot between them will not reveal anything.

 Fig. 9 Concentration of three species dynamics.

6.0 STIFF ODE.

Stiff ODEs are evil. Most of numerical methods for solving
ordinary differential equations will become unbearably slow
when the ODEs are stiff. Unfortunately, a large set of ODEs
are frequently stiff in practice. It is very important to use an
ODE solver that solves stiff equations efficiently. "Stiffness" is
associated with equations which have more than one time
scale of interest. A stiff ODE is an ordinary differential equa-
tion that has a transient region whose behavior is on a differ-
ent scale from that outside this transient region. An important
characteristic of a stiff system is that the equations are always
stable, meaning that they converge to a solution.

,1000yy .1)0(y (13)
Basically, stiff ODE‘s are the motivation for Implicit Methods.
Consider a typical example as given in (13). This we will try
obtain a solution for it from, first of all the analytical stand-
point and the following MATLAB code helped us to do just
that.

y=dsolve('Dy=-1000*y', 'y(0)=1',
'IgnoreAnalyticConstraints','none')

The analytical result of (13) is y=e-1000t. The large negative fac-
tor in the exponent is a sign of a stiff ODE. It means this term
will drop to zero and become insignificant very quickly.
 For the numerical solution, it is much obvious that ode4, a
fixed-step solver will be a bad choice to approximate a solution
for this model. As a result of the exponent growing, the time-
step must shrink to give acceptable results. In the worst case,
you would have to make your time-step so small that simula-
tions would appear to be stopped. This was a typical expe-

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

rience we had when we model (13) in Simulink and tried solve
with ode4. As a matter of fact, the simulation went through but
no result was displayed graphically (y=1). Interestingly, ode45
gave a very good approximation of the model. The MATLAB
code for the ode45 solution is as given below.

function stiff_ode_code
%t=0:0.01:0.4
t=[0 0.006]
ini_y=1;
[t,y]=ode45(@rhs,t,ini_y);
%[t,y2]=ode4(@rhs,t,ini_y);
y_true = exp(-1000*t); % exact soln
%plot(t,y,'o',t,y_true,t,y2,'+'),grid
plot(t,y,'o',t,y_true),grid,xlabel('t'), ylabel('y')
function dydt=rhs(t,y)
dydt=-1000*y;
end
end

ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. That means that the numerical solver
ode45 combines a fourth order method and a fifth order me-
thod, both of which are similar to the classical fourth order
Runge-Kutta method discussed above.

 Fig. 10 Simulink model of a typical stiff ODE.

The modified Runge-Kutta varies the step size, choosing the
step size at each step in an attempt to achieve the desired ac-
curacy. Therefore, the solver ode45 is suitable for a wide varie-
ty of initial value problems in practical applications. In gener-
al, ode45 is the best function to apply as a ―first try‖ for most
problems.

 Fig. 11 Stiff ODE solution.

The solver ode45, ode113 and ode15s (stiff solver) gave a good of

the model with no obvious disparity. In most cases simulation

of a stiff ode with a non-appropriate solver will be

unnreasnably slow. Fig 11 above gives the simulation results

excluding that of ode15s.

6.0 CONCLUSION

In this paper, the authors presented a variety of methods us-
ing MATLAB/Simulink to solve Ordinary Differential Equa
tions (ODEs). An example problem for each of three engineer-
ing disciplines has been provided with that of a typical stiff
ODE example. With the RL filter and stiff ODE, we were able
to prove the fact no single numerical method of solving a
model suffices for all systems. This could be clearly seen in
Fig. 3 that the fixed-step solver (ode4) gave a poor approxima-
tion of the system at some regimes of simulation. With, the
stiff ODE, ode4 failed completely!
 The variable step-solvers (ode45 and ode113) gave acceptable
results. Thus, identifying the nature of an ODE is the very first
step in obtaining its solution. With the mechanical and chemi-
cal engineering examples, there was excellent correlation with
both fixed-step and variable-step solvers in the results for the
three techniques employed, namely: using the MATLAB sym-
bolic solver (dsolve) for analytical solutions, using the block
diagram programming language-Simulink, and finally using a
script file (m-file). With a minimal amount of effort, these
techniques allow scientist to solve engineering problems with
an excellent ―graphical picture‖ of the result.
 The very essence of comparing simulation results with ana-
lytical one is to ensure that the numerical approximation gives
an acceptable result using the analytical one as a benchmark.

7.0 ACKNOWLEDGMENT

The authors will like to appreciate the Director-General of
NASRDA, Dr. S. O Mohammed for making CSTP the bedrock
of scientific research in NASRDA. We also thank Dr. Femi A.
Agboola, Director, Engineering and Space Systems (ESS) at
NASRDA, for his invaluable insight.

REFERENCES

[1] L. F. Shampine, I. Gladwell, S. Thompson. Solving ODEs with MATLAB,

ISBN 978-0-511-07707-4, USA, 2003.

[2] The MAthWorks, Inc., MathWorks Documentation-MALAB Version

7. Symbolic Math Toolbox,2012.

[3] Delores M. Etter. Engineering Problem Solving with MATLAB‖,

Second Edition Prentice Hall, ISBN-13:978-0133976885, USA,1996.

[4] Robert L. Williams II, Douglas A. Lawrence. ‗Linear State-space Con-

trol Systems‘. John Wiley & Sons, Inc. ISBN: 978-0-471-73555-7, New

Jersey, USA, 2007.

[5] Aliyu Bhar Kisabo, Femi Agbola, Adetoro Moshood Adesoye Lanre

and Ogun Funmilayo Adebimpe. Autopilot Design for A Generic

Based Expendable Launch Vehicle, Using Linear Quadratic gaussian

(LQG) Control. European Journal of Scientific Research, Vol.50, No.4,

(February), pp. 597-611, ISSN 1450-216X,2011.

[6] Aliyu Bhar Kisabo. ―Expendable Launch Vehicle Flight Control; De-

sign & Simulation With Matlab/Simulink‖, ISBN 973-3-8443-2729-8,

Germany, 2011.

