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Abstract— Ordinary differential equations (ODEs) are used throughout engineering, mathematics, and science to describe how physical 

quantities change. Hence, effective simulation (or prediction) of such systems is imperative. This paper explores the ability of 

MATLAB/Simulink
®
 to achieve this feat with relative ease-either by writing MATLAB code commands or via Simulink for linear Initial Value 

Problems (IVPs). Also, solutions to selected examples considered in this paper were approached from the standpoint of a numerical and 

exact solution for the purpose of comparison. Since no single numerical method of solving a model suffices for all systems, choice of a 

solver is of utmost important. Thus, experimenting between fixed-step and variable-step solver was also explored. For the selected 

examples, variable-step solvers out-performed the fixed-step counterpart. 

Index Terms— ODEs, analytical solution, numerical solution, fixed-step solvers, variable step-solvers, MATLAB/Simulink  

——————————      —————————— 

1 INTRODUCTION                                                                     

N mathematics, an ordinary differential equation (ODE) is 
an equation in which there is only one independent varia-
ble and one or more derivatives of a dependent variable 

with respect to the independent variable, so that all the deriva-
tives occurring in the equation are ordinary derivatives. The 
important issue is how the unknown variable for instance y 
appears in the equation. A linear ODE involves the dependent 
variable (y) and its derivatives by themselves. There must be 
no "unusual" nonlinear functions of y or its derivatives. Also, a 
linear equation must have constant coefficients, or coefficients 
which depend on the independent variable (x, or t). If y or its 
derivatives appear in the coefficient the equation is nonlinear. 
In the case where the equation is linear, it can be solved by 
analytical methods. 

Ordinary differential equations arise in many different con-
texts including geometry, mechanics, astronomy, population 
modeling, control engineering etc. Many mathematicians have 
studied differential equations and contributed to the field, 
including Newton, Leibniz, the Bernoulli family, Riccati, Clai-
raut, d'Alembert and Euler. Much study has been devoted to 
the solution of ordinary differential equations. There is one 
basic feature common to all problems defined by a linear or-
dinary differential equation: the equation relates a function to 
its derivatives in such a way that the function itself can be de-
termined. This is actually quite different from an algebraic 
equation, say whose solution is usually a number.  

Linear systems theory is the cornerstone of control theory and 
a prerequisite for essentially all graduate courses in this area. 
It is a well-established discipline that focuses on linear diffe-
rential equations from the perspective of control and estima-
tion. Control Engineering plays a fundamental role in modern 
technological systems.  
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The benefits of improved control in industry can be immense. 
They include improved product quality, reduced energy con-
sumption, minimization of waste materials, increased safety 
levels and reduction of pollution. Owing to the fact that a 
large number of controllers implemented in real life are linear 
ones, the study and means of obtaining solution to linear Or-
dinary Differential Equations that depict the behavior of such 
dynamic systems or model is imperative, not just from the 
mathematical standpoint but from the fact that such controller 
design has the system dynamics as the root of the theoretical 
design. 

The problems of solving an ODE are classified into initial 
value problems (IVP) and boundary value problems (BVP), 
depending on how the conditions at the endpoints of the do-
main are specified. All the conditions of an initial-value prob-
lem are specified at the initial point. On the other hand, the 
problem becomes a boundary-value problem if the conditions 
are needed for both initial and final points. The ODE in the 
time domain are initial-value problems, so all the conditions 
are specified at the initial time, such as t = 0 or x = 0. For nota-
tions, we use t or x as an independent. MATLAB has a dearth 
of solver that can be used to obtain solution to ODE's with rela-
tive ease. In this paper, the version 2010a of MATLAB® was 
used for all simulations. 

2.0 SOLVERS 

A dynamic system is simulated by computing its states at suc-
cessive time steps over a specified time span, using informa-
tion provided by the model. The process of computing the 
successive states of a system from its model is known as solv-
ing the model. No single method of solving a model suffices 
for all systems. Accordingly, a set of programs, known as solv-
ers, are provided that each embody a particular approach to 
solving a model.  

Mathematicians have developed a wide variety of numeri-
cal integration techniques for solving the ordinary differential 
equations (ODEs) that represent the continuous states of dy-
namic systems. An extensive set of fixed-step and variable-step 
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continuous solvers are provided, each of which implements a 
specific ODE solution method.  

2.1 Fixed-Step solvers 

The solvers provided in Simulink fall into two basic catego-
ries: fixed-step and variable-step. Fixed-step solvers solve the 
model at regular time intervals from the beginning to the end 
of the simulation. The size of the interval is known as the step 
size. You can specify the step size or let the solver choose the 
step size. Generally, decreasing the step size increases the ac-
curacy of the results while increasing the time required for 
simulating the system. 

Two types of fixed-step continuous solvers that Simulink 
provides are: explicit and implicit. Both are approaches used 
in numerical analysis for obtaining numerical solutions of 
time-dependent ordinary and partial differential equations, as 
is required in computer simulations of physical processes. The 
difference between these two types lies in the speed and the 
stability. An implicit solver requires more computation per 
step than an explicit solver but is more stable. Therefore, the 
implicit fixed-step solver that Simulink provides is more adept 
at solving a stiff system than the fixed-step explicit solvers. 

2.1.1 Explicit Fixed-Step Continuous Solvers.   

Explicit solvers compute the state of a system at a later time 
from the state of the system at the current time. Hence, the 
value of a state at the next time step is computed as an explicit 
function of the current values of both the state and the state 
derivative. Expressed mathematically for a fixed-step explicit 
solver: 

),(*)()1( nDxhnxnx                                                   (1) 
where x is the state, Dx is the solver dependent function that 
estimates the state derivative, h is the step size, and n indicates 
the current time step. Simulink provides a set of explicit fixed-
step continuous solvers. The solvers differ in the specific nu-
merical integration technique that they use to compute the 
state derivatives of the model. None of the explicit fixed-step 
continuous solvers in Simulink has an error control mechan-
ism. Therefore, the accuracy and the duration of a simulation 
depend directly on the size of the steps taken by the solver. As 
you decrease the step size, the results become more accurate, 
but the simulation takes longer. Also, for any given step size, 
the more computationally complex the solver is, the more ac-
curate are the simulation results. 

2.1.2 Implicit Fixed-Step Continuous Solvers. 

An implicit fixed-step solver computes the solution by solving 
an equation involving both the current state of the system and 
the later one. This solution, at the next time step is computed 
as an implicit function of the state at the current time step and 
the state derivative at the next time step. In other words: 

.0)1(*)()1( nDxhnxnx                                      (2) 
Simulink provides one implicit fixed-step solver: ode14x. 

This solver uses a combination of Newton's method and 
extrapolation from the current value to compute the value of a 
state at the next time step. You can specify the number of 
Newton's method iterations and the extrapolation order that 
the solver uses to compute the next value of a model state. The 
more iterations and the higher the extrapolation order that 

you select, the greater the accuracy you obtain. However, you 
simultaneously create a greater computational burden per step 
size. 

2.3.0 Variable-Step Continuous solvers. 

Variable-step solvers vary the step size during the simulation, 
reducing the step size to increase accuracy when a model's 
states are changing rapidly and increasing the step size to 
avoid taking unnecessary steps when the model's states are 
changing slowly. Computing the step size adds to the compu-
tational overhead at each step but can reduce the total number 
of steps, and hence simulation time, required to maintain a 
specified level of accuracy for models with rapidly changing 
or piecewise continuous states. The variable-step solvers in the 
Simulink product dynamically vary the step size during the 
simulation. Each of these solvers increases or reduces the step 
size using its local error control to achieve the tolerances that 
you specify. You can further categorize the variable-step con-
tinuous solvers as: one-step or multistep, single-order or vari-
able-order, and explicit or implicit. 

2.3.1 Explicit Continuous Variable-Step Solvers. 

The explicit variable-step solvers are designed for non-stiff 
problems. Simulink provides three such solvers: ode45, ode23, 
and ode113. 

While you can apply either an implicit or explicit conti-
nuous solver, the implicit solvers are designed specifically for 
solving stiff problems whereas explicit solvers are used to 
solve non-stiff problems. A generally accepted definition of a 
stiff system is a system that has extremely different time 
scales. Compared to the explicit solvers, the implicit solvers 
provide greater stability for oscillatory behavior, but they are 
also computationally more expensive; they generate the Jaco-
bian matrix and solve the set of algebraic equations at every 
time step using a Newton-like method. 

3.0 MATLAB AND IVPS OF ODES. 

IVPs of ODEs are categorized as non-stiff and stiff. It is hard to 
define stiffness, but its symptoms are easy to recognize. Unfor-
tunately, the distinction between stiff and non-stiff IVPs can 
be very important when choosing a method. The MATLAB 
IVP solvers implement a variety of methods, but the documen-
tation recommends that you first try ode45, a code based on a 
pair of one-step explicit Runge–Kutta formulas. If you suspect 
that the problem is stiff or if ode45 should prove unsatisfacto-
ry, it is recommended that you try ode15s, a code based on the 
backward differentiation formulas (BDFs). These two types of 
methods are among the most widely used in general scientific 
computing. Note also that Adams methods that are imple-
mented in ode113 are often preferred over explicit Runge–
Kutta methods when solving non-stiff problems in general 
scientific computing. 

In the bid to determine solution to ODEs, couple with the 
fact that they arise in diverse forms, it is convenient for both 
theory and practice to write them in a standard form. For a 
first order ODE it may be written as, 

).,( ytfy                                                                                (3) 
This is necessary because MATLAB IVP solvers accept prob-
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lems of the more general form given in (4) involving a nonsin-
gular mass matrix M(t, y). These equations can be written in the 
form given in (1) with f(t,y)=M(t,y)-1 F(t,y), but for some kinds 
of problems the form in (4) is more convenient and more effi-
cient. With either form, we must first formulate the 
ODEs as a system of first-order equations. 

).,(),( ytfyytM                                                                (4) 
 In either case it is assumed that the ODEs are defined on a 
finite interval a≤t≤b  and that the initial values are provided as 
a vector given in (5). The numerical methods for IVPs starts 
with y0 = A = y(a) and then successively compute approxima-
tions  yn ≈ y(tn) on a mesh a=t0 <∙∙∙< tN =b. On reaching tn , the 
basic methods are distinguished by whether or not they use 
previously computed quantities such as yn-1 , yn-2 , …If they do, 
they are called methods with memory and otherwise, one-step 
methods.  

.)( Aay                                                                                       (5) 
The computation of yn+1  is often described as taking a step of 
size hn = tn+1 – tn from tn . For brevity we generally write h = hn 
in discussing the step from tn. On reaching (tn, yn), the local 
solution u(t) is defined as the solution of 

),( utfu       .)( nn ytu                                                      (6) 
A standard result from the theory of ODEs states that if v(t) 
and w(t) are solutions of (3) and if f(t, y) satisfies a Lipschitz 
condition with constant L, then for α < β we have 

.)()()()( )(Lewvwv                                (7) 
In the classical situation that L(b − a) is of modest size, this re-
sult tells us that the IVP (1), (4) is moderately stable. This is 
only a sufficient condition. Indeed, stiff problems are (very) 
stable, yet L(b − a) >> 1. Without doing some computation, it is 
not easy to recognize that a stable IVP is stiff. There are two 
essential properties that will help you with this: A stiff prob-
lem is very stable in the sense that some solutions of the ODE 
starting near the solution of interest converge to it very rapid-
ly (―very rapidly‖ here means that the solutions converge over 
a distance that is small compared to b − a, the length of the 
interval of integration). This property implies that some solu-
tions change very rapidly, but the second property is that the 
solution of interest is slowly varying. 

   The basic numerical methods approximate the solution 
only on a mesh, but in some codes – including all of the MAT-
LAB solvers – they are supplemented with (inexpensive) me-
thods for approximating the solution between mesh points. 
The backward differentiation formulas (BDFs) are based on 
polynomial interpolation and so give rise immediately to a 
continuous piecewise polynomial function S(t) that approx-
imates y(t) everywhere in [a, b]. There is no natural polynomial 
interpolate for explicit Runge–Kutta methods, which is why 
such interpolates are a relatively new development. A method 
that approximates y(t) on each step [tn , tn+1] by a polynomial 
that interpolates the approximate solution at the end points of 
the interval is called a continuous extension of the Runge–Kutta 
formula. 

This paper will examine 4 simple applications, one each in 
electrical, mechanical, chemical and a stiff problem. All solu-
tions to the selected problems will require the solution of a 
differential equation. First, the authors will present a method 
using the symbolic processing capabilities of MATLAB to 

quickly code a differential equation for a graphical solution. 
Second, the differential equations will be modeled and solved 
graphically using Simulink. Finally, the authors will present 
methods which uses MATLAB script file (m-file). Solvers will 
be experimented and comparison will be made with the exact 
solution as the benchmark [1]. 

4.0 ELECTRICAL ENGINEERING APPLICATION.                                    

The first order ordinary differential equation that describes a 
simple series electrical circuit with a resistor, inductor, and 
sinusoidal voltage source is as follows: 
 ,)150sin(10 iRtdtdiL    .0)(ti                                (8) 
For this example, the inductance, L is 1 henry and the resis-
tance R is 10 Ω. The voltage source is sinusoidal with a peak 
voltage equal to 10 volts and an angular velocity of 150 
rad/sec. Fig. 1 below gives a pictorial view of the typical cir-
cuit arrangement in consideration. 
 
 
 
 
 
   
 
 
   
   
                                    Fig.1  Series RL circuit. 
 
The MATLAB statement written to solve (8) symbolically (i.e., 
obtaining exact solution) is as follows [2]: 
 c=dsolve('Dc=-10*c+10*sin(150*t)',' c(0)=0',… 
               'IgnoreAnalyticConstraints','none') 
                ezplot(c,[0 0.5]) 
The dsolve function symbolically solves the ordinary differen-
tial equation specified above. The first argument is the actual 
ODE to be solved. D denotes differentiation with respect to the 
independent variable which in this case is time t. A repeated 
differentiation process would be required if a digit other than 
1 were to follow D. The character following the D (I in this 
case, is the circuit current), is the dependent variable. The re-
maining terms of the equation are coded as usual. The second 
argument is used to specify the initial conditions of the circuit. 
The initial current in this circuit at t = 0 is 0. The final argu-
ment is used to specify the independent variable (missing, 
MATLAB assumes t by default). Note that all arguments must 
be contained within single quotation marks as shown. The 
output from the dsolve function is the symbolic solution to the 
differential equation. 
         Next, the differential equation describing the RL electric-
al circuit is modeled using Simulink. Simulink is a block dia-
gram programming language that is packaged with MATLAB. 
With Simulink, the differential equation is described using 
blocks from  Simulink library. The blocks include an integra-
tor, gain, summer, sine wave source, and scope. The blocks are 
then ―wired‖ together to generate the differential equation. 
The complete Simulink model for the electrical circuit is de-
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picted in Fig. 2. Note that a time clock is added to the Simu-
limk model to enable the exportation of the simulation time to  
MATLAB workspace for accesability to plot simulation time 
against the current. 

 
                                                                              

Fig. 2 Simulink model of the RL circuit. 
 
In Simulink, there lies the easy to try different solvers during 
Simulation. Categorically, a solver in the class of fixed-step 
solvers and that of the variable step-solvers can be selected. 
Thus, in this paper, for the Simulink simulation we used the 
fixed-step solver ode4.  
     Thus, the graphical result to the RL circuit problem as de-
scribed by (8) is depicted in Fig. 3. It is interesting to note that 
ode45 and ode113 (adaptive-step solvers) gave a better approx-
imation of the dynamic system compared to ode4 (a fixed-step 
solver). We decided to capture just one of the points of dispar-
ity by zooming the graphical solutions to make our case. 

 
 
Fig. 3 Graphical result of the RL circuit dynamics. 
 

Here, for this example, the m-file option of the model solu-
tionhe  the following code were used to generate results for 
the solver ode45: 
             function RL_ode45_sln 
                         t=[0 0.5] 
                              L=1; 
                              R=10; 

                               ini_i=0; 
                               [t,i]=ode45(@rhs,t,ini_i); 
                               plot(t,i,'o'),grid 
                               xlabel('t'), ylabel('i') 
                               axis ([0 0.5 -0.1 0.15]) 
                               function didt=rhs(t,i) 
                               didt=(10*sin(150*t)-i*10)/L; 
                               end 
                               end 
 

4.0 MECHANICAL ENGINEERING APPLICATION.                                    

Given the linear single-input, single-output, mass-spring-
damper translational mechanical system, as shown in Fi.g 4. 
The mathematical model is given as in (9); a second order dif-
ferential equation. 
 
   
 
 
 
 
   
 
 
   

           Fig. 4 Mass-spring-damper system. 
 
For this system, the input is force f(t) and the output is dis-
placement y(t), ẏ (t) is the velocity of the system dynamics. 
Where, c is the damping coefficient and k the spring constant. 

),()()()( tftkytyctym     ,0)(ty   .0)(ty      (9) 
Typically, the suspension mechanisms of automobiles are 
modeled as given in (9). For this example the following values 
were adopted; mas, m=2kg, initial velocity, ẏ =0m/sec, initial 
displacement, y=0m, damping coefficient, c=2, spring constant, 
k=4 and f(t)=1. 

It is obvious that the dynamic system described by (9) has 
two states (displacement and velocity), for this research our 
investigation will focus only on position for obvious reasons.  
To explore the behavior of the mechanical system, first from 
the standpoint of the exact solution, the following MATLAB 
code were used [3]: 

 y=dsolve('D2y=-(2/3)*Dy –  
          (4/3)*y + 1/3', 'Dy(0)=0','y(0)=0',... 
          'IgnoreAnalyticConstraints','none') 
           pretty(y) 

We proceeded to model the system given in (9) in Simulink, 
and employed the solvers ode4 and ode45 and ode113 for simu-
lation result. Simulink model of the system is depicted in Fig. 
5. Notice also that a both states of the dynamic system are 
made available separately in individual scoop blocks and also 
in a display block. A third ‗scoop‘ block is also used to display 
both states in one graph for perusal.A display block shows the 
numerical values of each state at each time inatant during si-
mulation and only the values at the last time of simulation 
remains displayed after simulation.  



International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012                                                                                  5 

ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

 
                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Simulink model of mass-spring-damper system. 
 
To investigate further for comparison, the solver ode45 was 
employed using the option of MATLAB code to generate the 
predicted approximate behavior of the system. These codes 
are: 
  function spring_mass_damper_ode45 

t=[0 6]; % time scale 
u=1; 
ini_y=0;  % initial conditions 
ini_dydt=0; 
[t,y]=ode45(@rhs,t,[ini_y; ini_dydt]); 
plot(t,y(:,1)); 
function dydt=rhs(t,y) 
dydt_1=y(2); 
dydt_2=-(2/3)*y(2)-(4/3)*y(1)+ (1/3)*u; 
dydt=[dydt_1;dydt_2]; 
end 
end 

Note, that either Simulink or MATLAB code could be used to 
solve ODEs with any solver of one‘s choice, depending on 
which means is more convenient for the user of MATLAB [3]. 
 
 
 
 
 
 
 
 
 
 
  
 
     Fig.  6 Mass-springe-damper dynamics solution. 
 
For the ongoing example, ode45, ode113 and ode4 gave a very 
good approximation of the dynamic system throughout the 

regime of simulation. Hence, only one of the results is de-
picted in Fig. 6. 

4.1 Simulation in State-space. 

It is of great importance to also show that the model given in 
(9) could be formulated in terms of state-space. The model in 
state-space can be easily mapped in Simulink environment for 
numerical simulation. This provides the bases for modeling 
higher order differential equations. For the mass-spring-
damper problem, the model for the system is state-space is as 
given  

,BuAxx   .DuCxy                                                (10) 
For the numerical simulation in Simulink, a state-space block 
is available in Simulink library. This block allows the direct 
input of the A, B, C and D matrixes that are unique to a partic-
ular state-space model. Modern Control Theory has state-
space as its mathematical base [4], hence effective simulation 
of state-space models is of paramount importance to the con-
trol and stability engineer, a typical case is dealt with in [5]. 

4.2 Simulation in Transfer Function. 

Also, Simulink gives a flexible platform that allows simulation 
of dynamic systems in transfer functions. For the mass-spring-
damper problem, it can be shown that the equivalent model 
for (9) in transfer function is as given (11). Simulink has a 
standard block that allows the direct input of numerator and 
denominator terms that describe a dynamic system. For clas-
sical controller design and analysis [6], this MATLAB capabili-
ty is most adequate. 

.)()()( 121 kcsmssfsx                                       (11) 
The state-space model and transfer function describing the 
mass-spring-damper problem modeled in Simulink is shown 
in Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
     

 
Fig. 7 State-Space and Transfer function Simulink model. 

5.0 CHEMICAL ENGINEERING APPLICATION.                                    

The following 3 set of ordinary differential equations describes 
the change in concentration between three species in a tank.  

,1kdtd                    .5)0(  
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,111 kkdtd         .0)0(          (12) 
,11kdtd                      .0)0(                                     

The reactions α → β → λ occur within the tank. The constants 
k1, and k11 describe the reaction rate for α → β and β → λ re-
spectively. Where, k1=1hr-1 and k11 =2hr-1.  

For the dynamic system in (12), as earlier done, we seek its 
true solution by solving it analytically with the following 
MATLAB command.  

[a,b,g] = dsolve('Da = -1*a', 'Db = 1*a - 2*b',... 
'Dg=2*b','a(0) = 5, b(0) = 0','g(0)=0', 
'IgnoreAnalyticConstraints','none') 
pretty(a), pretty(b), pretty(g) 
ezplot(a) 
hold on 
ezplot(b) 
ezplot(g) 
Grid on 
axis([0 5 0 5]) 

Now we will go ahead to model (12) in Simulink for the sole 
purpose of obtaining the first numerical solution using the 
approximation method of ode4 (Runge-Kutta). This was easily 
modeled as depicted in Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
  
 
 

 
Fig. 8: Simulink model of chemical mixture dynamics. 
 
Finally, for this example we will employ a MATLAB code that 
will involve the solver ode45 to solve the problem at hand. This 
was achieved with the following code: 

function chem_mixture_ode45 
t=[0 5]; % time scale 
k1=1; 
k11=2; 
c0=[5 ;0 ;0];  % initial conditions; 
[t,c]=ode45(@rhs,t,c0); 
%plot(t,c(:,1),'+',t,c(:,2),'*',t,c(:,3)); 
plot(t,c(:,1),t,c(:,2),t,c(:,3)); 
legend('alpha','beta','gamma') 
xlabel('Time(seconds)') 
ylabel('concentration of each specie(mols/hr)') 

     grid 
function dcdt=rhs(t,c) 
% c(1)=Ca, c(2)=Cb, c(3)=Cg 
dcdt_1=-k1*c(1); 
dcdt_2=k1*c(1)-k11*c(2); 
dcdt_3=k11*c(2); 
dcdt=[dcdt_1;dcdt_2;dcdt_3]; 
end 
end 

Just like the situation in Fig. 6, no noticeable difference was 
observed between the exact result and those of ode45, ode113 
and ode4 numerical approximation methods. Hence, a com-
parative plot between them will not reveal anything. 
 
 
 
 
 
 
 
 
 
 
 
  
          Fig. 9 Concentration of three species dynamics. 
 

6.0 STIFF ODE.                                    

Stiff ODEs are evil. Most of numerical methods for solving 
ordinary differential equations will become unbearably slow 
when the ODEs are stiff. Unfortunately, a large set of ODEs 
are frequently stiff in practice. It is very important to use an 
ODE solver that solves stiff equations efficiently. "Stiffness" is 
associated with equations which have more than one time 
scale of interest. A stiff ODE is an ordinary differential equa-
tion that has a transient region whose behavior is on a differ-
ent scale from that outside this transient region. An important 
characteristic of a stiff system is that the equations are always 
stable, meaning that they converge to a solution.  

,1000yy     .1)0(y                                                      (13) 
Basically, stiff ODE‘s are the motivation for Implicit Methods. 
Consider a typical example as given in (13). This we will try 
obtain a solution for it from, first of all the analytical stand-
point and the following MATLAB code helped us to do just 
that. 

y=dsolve('Dy=-1000*y', 'y(0)=1', 
'IgnoreAnalyticConstraints','none') 

The analytical result of (13) is y=e-1000t. The large negative fac-
tor in the exponent is a sign of a stiff ODE. It means this term 
will drop to zero and become insignificant very quickly. 
       For the numerical solution, it is much obvious that ode4, a 
fixed-step solver will be a bad choice to approximate a solution 
for this model.  As a result of the exponent growing, the time-
step must shrink to give acceptable results. In the worst case, 
you would have to make your time-step so small that simula-
tions would appear to be stopped. This was a typical expe-
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rience we had when we model (13) in Simulink and tried solve 
with ode4. As a matter of fact, the simulation went through but 
no result was displayed graphically (y=1). Interestingly, ode45 
gave a very good approximation of the model. The MATLAB 
code for the ode45 solution is as given below. 

function stiff_ode_code 
%t=0:0.01:0.4 
t=[0 0.006] 
ini_y=1; 
[t,y]=ode45(@rhs,t,ini_y); 
%[t,y2]=ode4(@rhs,t,ini_y); 
y_true = exp(-1000*t); % exact soln 
%plot(t,y,'o',t,y_true,t,y2,'+'),grid 
plot(t,y,'o',t,y_true),grid,xlabel('t'), ylabel('y') 
function dydt=rhs(t,y) 
dydt=-1000*y; 
end 
end 

ode45 is based on an explicit Runge-Kutta (4,5) formula, the 
Dormand-Prince pair. That means that the numerical solver 
ode45 combines a fourth order method and a fifth order me-
thod, both of which are similar to the classical fourth order 
Runge-Kutta method discussed above.  
 
 
 
 
 
 
 
 
  
       Fig. 10 Simulink model of a typical stiff ODE. 
 
The modified Runge-Kutta varies the step size, choosing the 
step size at each step in an attempt to achieve the desired ac-
curacy. Therefore, the solver ode45 is suitable for a wide varie-
ty of initial value problems in practical applications. In gener-
al, ode45 is the best function to apply as a ―first try‖ for most 
problems.  
 
 
 
  
  
 
 
  
 
  
  
    
  
            Fig. 11 Stiff ODE solution. 

The solver ode45, ode113 and ode15s (stiff solver) gave a good of 

the model with no obvious disparity. In most cases simulation 

of a stiff ode with a non-appropriate solver will be 

unnreasnably  slow. Fig 11 above gives the simulation results 

excluding that of ode15s.  

6.0 CONCLUSION                                    

In this paper, the authors presented a variety of methods us-
ing MATLAB/Simulink to solve Ordinary Differential Equa 
tions (ODEs). An example problem for each of three engineer-
ing disciplines has been provided with that of a typical stiff 
ODE example. With the RL filter and stiff ODE, we were able 
to prove the fact no single numerical method of solving a 
model suffices for all systems. This could be clearly seen in 
Fig. 3 that the fixed-step solver (ode4) gave a poor approxima-
tion of the system at some regimes of simulation. With, the 
stiff ODE, ode4 failed completely!  
     The variable step-solvers (ode45 and ode113) gave acceptable 
results. Thus, identifying the nature of an ODE is the very first 
step in obtaining its solution. With the mechanical and chemi-
cal engineering examples, there was excellent correlation with 
both fixed-step and variable-step solvers in the results for the 
three techniques employed, namely: using the MATLAB sym-
bolic solver (dsolve) for analytical solutions, using the block 
diagram programming language-Simulink, and finally using a 
script file (m-file). With a minimal amount of effort, these 
techniques allow scientist to solve engineering problems with 
an excellent ―graphical picture‖ of the result.  
    The very essence of comparing   simulation results with ana-
lytical one is to ensure that the numerical approximation gives 
an acceptable result using the analytical one as a benchmark.  
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